Exam Analysis 2014

Date : 03-11-2014
Time : 14.00-17.00
Place : Aletta Jacobshal
Provide clear arguments for all your answers; 'yes' or 'no' answers are not allowed. In your argumentation you may use all theorems and statements in the book. However, you should indicate which theorems/ statements you are using.

The detailed grading scheme can be found below.

1. Let $A \subset \mathbb{R}$ be bounded, and let L be the set of limit points of A.
(a) Prove that L is bounded.
(b) Assume L is non-empty. Let $c=\sup L$. Prove that c is a limit point of A.
(c) Prove that for all $\epsilon>0$ there are only finitely many elements $x \in A$ with $x>c+\epsilon$, while there are infinitely many elements $x \in A$ with $x>c-\epsilon$.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfy
$f(t x)=t f(x)$
for all $x, t \in \mathbb{R}$.
(a) Show that f is continuous everywhere.
(Hint: for any two points x, y with $x \neq 0$ we can find $t \in \mathbb{R}$ such that $y=t x$.)
(b) Show that f is differentiable everywhere, and prove that
$x f^{\prime}(x)=f(x)$
for all x.
3. Let $f, g:[a, b] \rightarrow \mathbb{R}$ be two continuous functions, which are differentiable on (a, b). Assume that
$f(a) \leq g(a), \quad f^{\prime}(x)<g^{\prime}(x), x \in(a, b)$
Prove that
$f(x)<g(x)$,
for all $x \in(a, b]$.
4. Let $f_{n}:[a, b] \rightarrow[c, d]$, and $g_{n}:[c, d] \rightarrow \mathbb{R}, n=1,2 \cdots, \infty$, be sequences of continuous functions. Let f_{n} converge uniformly to f, and let g_{n} converge uniformly to g.
Prove that the sequence of functions $h_{n}:[a, b] \rightarrow \mathbb{R}$, defined as the composition
$h_{n}:=g_{n} \circ f_{n}, \quad n=1,2 \cdots, \infty$
converges uniformly to the function $h:=g \circ f$.
5. Consider the series
$f(x)=\sum_{n=1}^{\infty} \frac{1}{1+n^{2} x}$
(a) Prove that the series converges uniformly on all intervals $[a, \infty)$ with $a>0$.
(b) Show that the function is differentiable on all those intervals.
6. (a) Let $f:[0,1] \rightarrow \mathbb{R}$ be Riemann integrable, and assume that $\int_{0}^{1} f=2$. Prove that there exists an $x \in(0,1)$ such that

$$
\int_{0}^{x} f=1
$$

(b) Consider the function $f:[0,1] \rightarrow \mathbb{R}$ defined by

$$
f(x)=\left\{\begin{aligned}
1, & x \in \mathbb{Q} \\
-1, & x \notin \mathbb{Q}
\end{aligned}\right.
$$

Is f Riemann integrable on $[0,1]$?

Grading scheme:

Total 100, Free 10.

1. a: $5, \mathrm{~b}: 5, \mathrm{c}: 5$.
2. a: 8 , b: 7 .
3. 15.
1. 15 .
2. a: 10, b: 5 .
3. a: $9, \mathrm{~b}: 6$.
